
Snodgrass, S., & Aha, D.W. (2014). System model formulation using Markov chains (Technical Note AIC-14-170).
Washington, DC: Naval Research Laboratory, Navy Center for Applied Research in AI.

System Model Formulation Using Markov Chains

Sam Snodgrass
Computer Science Department

Drexel University
Sam.PSnodgrass@gmail.com

David W. Aha
Navy Center for Applied Research in AI
Naval Research Laboratory, Code 5514

Washington DC
david.aha@nrl.navy.mil

Abstract

Creating formal models for systems manually is time
consuming and difficult. Automating the generation
and verification of these formal models can reduce the
overhead of developing the models. In this paper we
propose an approach (MC-MC) to verifying and gen-
erating portions of the formal model using Markov
chains.

Learning Formal Models of Systems
Formal models are used to explain the required behavior
of a system. However, manually creating these models
is difficult and time consuming. Machine learning tech-
niques can be used to automatically learn, generate,
and verify portions of the model, lessening the burden
on the designers and developers.

An important part of a formal model is a diagram
showing the different states of the system, and how
each state can be reached (or not reached) from an-
other. These diagrams are similar to state machines or
automata, and there is a large corpus of work related
to automatic generation of automata through learning.
For example, Balle et al. (Balle et al. 2013) use a
spectral learning algorithm to learn weighted automata.
Additionally, Cleeremans et al. (Cleeremans, Servan-
Schreiber, and McClelland 1989) and Giles et al. (Giles
et al. 1992) explore the use of neural networks for learn-
ing state machines. However, these approaches have
been used primarily for grammar modeling, and have
not been applied to constructing a formal model of a
system.

Additionally, some research has been performed on
automating and aiding in the design and verification
of formal systems. Păsăreanu et al. (Păsăreanu et al.
2008) employ the L∗ machine learning algorithm to per-
form system verification. We are instead interested in
the problem of model generation, which needs to pre-
cede verification. Neema et al. (Neema et al. 2003)
introduce a mixed-initiative toolset for aiding in model
design, but we want to automatically generate models
in order to ease the burden of the designers and devel-
opers. There has also been some work on using Markov
chains to test formal models (Whittaker, Thomason,
and others 1994) and on learning the transition weights

for the automaton style models, given the structure
(Whittaker and Poore 1993), but not on using Markov
chains to learn the structure of the models themselves.

The work we present in this paper is closely related to
the above work on learning state machines and their as-
sociated transition weights. We describe an application
of Markov chains to an interesting domain: learning a
state machine from a set of traces of system behavior
in order to model a system.

Methods
In this section we discuss how the Markov chain model
checker (from here on referred to as MC −MC) learns
from a set of traces, and how it utilizes the learned
information. A trace, in the context of this paper, is
the sequence of monitored events of the system that
occured during a user test. Table 1 shows a sample sec-
tion of a trace from a simplified version of RESCHU1,
a simulator in which a user controls multiple vehicles
using a graphical interface. The user’s goal is for their
vehicles to to reach as many targets as possible in an
allotted time, while avoiding hazard zones.

Learning
To learn the probability of transitioning from one
event to another, we employ Markov chains. Markov
chains (Markov 1971) can be used to model proba-
bilistic transitions between states (in our case, events).
A Markov chain is defined by a set of states, S =
e1, e2, ..., en, and a conditional probability distribution
(CPD), P (Et|Et−1), where Et is a variable representing
whichever state is encountered at time t. The CPD cor-
responds to the probability of transitioning to a state,
Et ∈ S, from a state, Et−1 ∈ S.

Using Markov chains, MC-MC learns a conditional
probability distribution corresponding to the probabil-
ity of the transitions between events. It learns the CPD
in two stages:

1. Compute Totals: MC-MC counts the number of
times that each event type follows each other event
type, in all of the input traces. This is represented
by T (ei | Ei−1). Table 2 shows the totals computed

1http://web.mit.edu/aeroastro/labs/halab/inventions.shtm

1



Table 1: A section of a user’s trace while interacting with RESCHU.

Time Event Name UAV UAVx UAVy Hazard Hazardx Hazardy Targetx Targety

0 Hazard Moved X X X Hazard3 259 147 X X

0 UAV Unsafe UAV0 361 300 Hazard3 259 147 X X

123 Add Waypoint UAV0 283 210 X X X 171 137

123 UAV Safe UAV0 283 210 X X X X X

221 Target Moved X X X X X X 73 391

270 Hazard Moved X X X Hazard5 160 80 X X

270 UAV Unsafe UAV0 170 136 Hazard3 160 80 X X

280 Add Waypoint UAV0 167 127 X X X 132 87

285 Target Moved X X X X X X 30 11

from the section of a trace in Table 1. Note that these
totals are being computed from a very short trace,
and therefore not all transitions are encountered.

2. Compute Probabilities: After finding the totals,
it computes the conditional probability distribution
(CPD) describing the Markov chain as follows:

P (ei|Ei−1) =
T (ei|Ei−1)

n∑
j=0

T (ej |Ei−1)
,

which means that the probability of transitioning
from the event represented by Ei−1 to ei is equal
to the number of times ei following the event repre-
sented by Ei−1 has been observed, divided by the to-
tal number of times any event following the event rep-
resented by Ei−1, has been observed. Table 3 shows
the probability distribution computed from the totals
in Table 2. Note that this distribution is computed
from a very short trace, and as such is not as complex
or complete as a typical CPD.

MC-MC does not apply any smoothing techniques,
because we are interested in which scenarios (or se-
quences of events) are possible, as observed through
the traces, and smoothing would obscure this informa-
tion. However, common smoothing techniques, such as
Laplace smoothing, could easily be introduced (Chen
and Goodman 1996).

Applying
In this section we discuss how MC-MC applies the
learned CPD and Totals matrix. We explore three dif-
ferent uses for the learned knowledge: transition dia-
gram generation, scenario generation, and scenario de-
tection.

Transition Diagram Generation MC-MC can
generate weighted graphs corresponding to the transi-
tions described in the conditional probability distribu-
tion. Weighted transition diagrams can be useful for

identifying common transitions, or for finding transi-
tions that are not supposed to occur, but do.

First, MC-MC creates a node representing the first
event in the CPD. Next, it creates nodes representing
any event in the CPD that the first event has a prob-
ability greater than some threshold of transitioning to.
Then, it draws directed edges, labelled with the tran-
sition probability, from the first event to the transition
event. The preceding steps are repeated for each row in
the CPD, only adding new nodes when an event is not
already represented. Figures 1 and 2 show transition
diagrams generated using no threshold and a threshold
of 10%, respectively.

Notice that, in Figure 2, all of the events are still
reachable, but many of the transitions that are present
in Figure 1 are missing. By removing the lower proba-
bility transitions, we get a more concise (albeit incom-
plete) description of the behavior of the system. Prun-
ing low probability transitions can be helpful when try-
ing to understand the general behavior of the system,
or when trying to find the more probable behavior.

Scenario Generation Generating scenarios can help
to fill in the gaps of the traces. That is, by generating
scenarios we can encounter scenarios that are evidenced
by the traces, but that do not necessarily occur within
them. These generated scenarios can then be used to
explore the space of scenarios, and determine if there is
any undesired behavior in the system.

MC-MC employs a scenario generation algorithm
adaptated from the recursive depth-limited search al-
gorithm (Russell and Norvig 1995). This algorithm ex-
plores the space of possible scenarios in a depth-first
manner. The search tree’s root node is the start event,
and the goal nodes are the end event. Each node’s chil-
dren are the events to which the node’s event has a
probability of transitioning, which is greater than some
threshold. The transition probabilities are taken di-
rectly from the learned conditional probability distribu-
tion. Each time a goal node, corresponding to a desired



Figure 1: Transition diagram with all transitions with probability greater than 0% generated from the conditional
probability distribution computed using our Markov chain implementation.

Figure 2: Transition diagram with all transitions with probability greater than 10% generated from the conditional
probability distribution computed using our Markov chain implementation.



Table 2: The totals corresponding to the trace section in Table 1. The events listed in the first column correspond
to the starting events, and events listed in the first row correspond to events being tansitioned to.

Events Hazard Moved UAV Unsafe Add Waypoint UAV Safe Target Moved Totals

Hazard Moved 0 2 0 0 0 2

UAV Unsafe 0 0 2 0 0 2

Add Waypoint 0 0 0 1 1 2

UAV Safe 0 0 0 0 1 1

Target Moved 1 0 0 0 0 1

Table 3: The conditional probability distribution (CPD) corresponding to the totals in Table 2. Each cell corresponds
to the probability of transitioning to the column label event from the row label event.

Events Hazard Moved UAV Unsafe Add Waypoint UAV Safe Target Moved

Hazard Moved 0 1 0 0 0

UAV Unsafe 0 0 1 0 0

Add Waypoint 0 0 0 .5 .5

UAV Safe 0 0 0 0 1

Target Moved 1 0 0 0 0

Table 4: The totals corresponding to the trace section
in Table 1, using an order three Markov chain. Note
that only the final column representing the total num-
ber of the times the configuration is seen is shown, for
conciseness.

Configurations Totals

Hazard Moved→UAV Unsafe→Add Waypoint 2

UAV Unsafe→Add Waypoint→UAV Safe 1

UAV Unsafe→Add Waypoint→Target Moved 1

Add Waypoint→UAV Safe→Target Moved 1

UAV Safe→Target Moved→Hazard Moved 1

Target Moved→Hazard Moved→UAV Unsafe 1

end event, is reached, the path to that node is stored
or output, and the probability of the path is calculated.
The total probability of the path is calculated by∏

e∈Path

P (ei|Ei−1),

which is the product of all the individual transition
probabilities of the path. The algorithm then back-
tracks to the previous node and resumes its search. If
the algorithm reaches the maximum allowed depth, as
provided by the user, then the algorithm backtracks to
the previous node.

Although this algorithm is designed to return all de-
sired paths up to a certain length, it could be modi-
fied to return only the n most probable paths, instead
of outputting every detected scenario, by maintaining
a list of scenarios and their probabilities, and replac-
ing the scenario with the lowest probability with a new
scenario with higher probability, if any is encountered.

Scenario Detection Generating evidenced scenarios
is helpful, but we may only want to concern ourselves
with scenarios that have actually occurred in the given
traces. Detecting a particular scenario in a set of traces,
and counting its occurrences can provide insight into
the actual behavior of the system (and of the users in-
teracting with the system) as opposed to the evidenced
and potential behavior.

It is possible to check whether a certain scenario oc-
curs in the given traces using a higher order Markov
chain. Suppose we have a scenario consisting of n



events, where n is a finite natural number. To check
if this scenario occurs in the traces, MC-MC performs
the Compute Totals portion of CPD learning algorithm,
for a Markov chain of length n. Next, it simply locates
the row containing the event configuration prescribed
by the given scenario, and checks the final column in
that row, which holds the total number of times that
configuration has been encountered in the traces. Thus,
the total number of times the desired scenario appears
in the traces has been computed.

For example, suppose we are using the section of a
trace from Table 1 as our trace, and we want to find the
scenario composed of the events Hazard Moved, UAV
Unsafe, and Add Waypoint, in that order. Then, MC-
MC simply generates the Totals matrix using an order
three Markov chain, as seen in Table 4, locates the row
corresponding to the desired scenario (first row), and
checks the final column for the total number of times
the scenario appears in the trace. This shows us that
the scenario in question occurs twice in the given trace.

Future Work
We would like to extend MC-MC to operate at run-
time, which would allow us to apply it in other domains.
For instance, if operating at run-time, it could then be
used for partial plan recognition and plan prediction.
This could have applications in programs that assist the
users, or in games as a way of improving the enemy AI
with regards to reacting to player behaviors and trying
to thwart player plans. We would also like to conduct
an empirical study of MC-MC. In this study, we would
compare how well MC-MC performs against other ap-
proaches to state machine learning, transition weight
learning, and event prediction. Alongside the study, we
would like to reason about MC-MC and the data used
to see if we can make any guarantees about our ap-
proach. Lastly, we want to employ hidden Markov mod-
els to learn the modes of the system. Modes are an ab-
straction of system states into equivalence classes (Heit-
meyer et al. ). Mode diagrams are used to model tran-
sitions between different modes (system states), where
each mode has some number of transitions (possibly self
loops). More generally, mode diagrams model the high
level behavior of the system itself. We believe that the
equivalence classes could be likened to the states of a
hidden Markov model. Learning the modes and mode
diagram would help to automate the software design
process further, and allow the requirements engineer to
either verify that the model matches his expectations
of the system, or realize that there is something wrong
with the system or his expectations.

References
Balle, B.; Carreras, X.; Luque, F. M.; and Quattoni, A.
2013. Spectral learning of weighted automata. Machine
Learning 1–31.

Chen, S. F., and Goodman, J. 1996. An empirical
study of smoothing techniques for language modeling.

In Proceedings of the 34th annual meeting on Associa-
tion for Computational Linguistics, 310–318. Associa-
tion for Computational Linguistics.

Cleeremans, A.; Servan-Schreiber, D.; and McClelland,
J. L. 1989. Finite state automata and simple recurrent
networks. Neural computation 1(3):372–381.

Giles, C. L.; Miller, C. B.; Chen, D.; Chen, H.-H.; Sun,
G.-Z.; and Lee, Y.-C. 1992. Learning and extracting fi-
nite state automata with second-order recurrent neural
networks. Neural Computation 4(3):393–405.

Heitmeyer, C. L.; Pickett, M.; Leonard, E. I.; Ray, I.;
Aha, D. W.; Trafton, J. G.; and Archer, M. M. Building
high assurance human-centric decision systems.

Markov, A. 1971. Extension of the limit theorems of
probability theory to a sum of variables connected in a
chain.

Neema, S.; Sztipanovits, J.; Karsai, G.; and Butts,
K. 2003. Constraint-based design-space exploration
and model synthesis. In Embedded Software, 290–305.
Springer.

Păsăreanu, C. S.; Giannakopoulou, D.; Bobaru, M. G.;
Cobleigh, J. M.; and Barringer, H. 2008. Learning
to divide and conquer: applying the l* algorithm to
automate assume-guarantee reasoning. Formal Methods
in System Design 32(3):175–205.

Russell, S., and Norvig, P. 1995. Arificial Intelligence:
A Modern Approach. Citeseer, 3rd edition. 87–88.

Whittaker, J. A., and Poore, J. H. 1993. Markov
analysis of software specifications. ACM Transactions
on Software Engineering and Methodology (TOSEM)
2(1):93–106.

Whittaker, J. A.; Thomason, M.; et al. 1994. A markov
chain model for statistical software testing. Software
Engineering, IEEE Transactions on 20(10):812–824.


